Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The goal of this work is to detect flaw formation in wire arc additive manufacturing (WAAM). This process uses an electric arc as the energy source in order to melt metallic wire and deposit the new material, similar to metal inert gas (MIG) welding. Industry has been slow to adopt WAAM due to the lack of process consistency and reliability. The WAAM process is susceptible to a multitude of stochastic disturbances that cause instability in the electric arc. These arc instabilities eventually lead to flaw formation such as porosity, spatter, and excessive deviations in the desired geometry. Therefore, the objective of this work is to detect flaw formation using in-situ acoustic (sound) data from a microphone installed near the electric arc. This data was processed using a novel wavelet integrated graph theory approach. This approach detected the onset of multiple types of flaw formations with a false alarm rate of less than 2%. Using this method, this work demonstrates the potential for in-situ monitoring and flaw detection of the WAAM process in a computationally tractable manner.more » « less
-
null (Ed.)Biological additive manufacturing (Bio-AM) has emerged as a promising approach for the fabrication of biological scaffolds with nano- to microscale resolutions and biomimetic architectures beneficial to tissue engineering applications. However, Bio-AM processes tend to introduce flaws in the construct during fabrication. These flaws can be traced to material nonhomogeneity, suboptimal processing parameters, changes in the (bio)-printing environment (such as nozzle clogs), and poor construct design, all with significant contributions to the alteration of a scaffold’s mechanical properties. In addition, the biological response of endogenous and exogenous cells interacting with the defective scaffolds could become unpredictable. In his Review, we first described extrusion-based Bio-AM. We highlighted the salient architectural and mechanotransduction parameters affecting the response of cells interfaced with the scaffolds. The process phenomena leading to defect formation and some of the tools for defect detection are reviewed. The limitations of the existing developments and the directions that the field should grow in to overcome said limitations are discussed.more » « less
-
null (Ed.)Abstract The objective of this work is to provide experimental validation of the graph theory approach for predicting the thermal history in additively manufactured parts that was recently published in the ASME transactions. In the present paper the graph theory approach is validated with in-situ infrared thermography data in the context of the laser powder bed fusion (LPBF) additive manufacturing process. We realize this objective through the following three tasks. First, two types of test parts (stainless steel) are made in two corresponding build cycles on a Renishaw AM250 LPBF machine. The intent of both builds is to influence the thermal history of the part by changing the cooling time between melting of successive layers, called interlayer cooling time. Second, layer-wise thermal images of the top surface of the part are acquired using an in-situ a priori calibrated infrared camera. Third, the thermal imaging data obtained during the two builds were used to validate the graph theory-predicted surface temperature trends. Furthermore, the surface temperature trends predicted using graph theory are compared with results from finite element analysis. As an example, for one the builds, the graph theory approach accurately predicted the surface temperature trends to within 6% mean absolute percentage error, and approximately 14 Kelvin root mean squared error of the experimental data. Moreover, using the graph theory approach the temperature trends were predicted in less than 26 minutes which is well within the actual build time of 171 minutes.more » « less
-
Abstract The goal of this work is to predict the effect of part geometry and process parameters on the instantaneous spatial distribution of heat, called the heat flux or thermal history, in metal parts as they are being built layer-by-layer using additive manufacturing (AM) processes. In pursuit of this goal, the objective of this work is to develop and verify a graph theory-based approach for predicting the heat flux in metal AM parts. This objective is consequential to overcome the current poor process consistency and part quality in AM. One of the main reasons for poor part quality in metal AM processes is ascribed to the heat flux in the part. For instance, constrained heat flux because of ill-considered part design leads to defects, such as warping and thermal stress-induced cracking. Existing non-proprietary approaches to predict the heat flux in AM at the part-level predominantly use mesh-based finite element analyses that are computationally tortuous — the simulation of a few layers typically requires several hours, if not days. Hence, to alleviate these challenges in metal AM processes, there is a need for efficient computational thermal models to predict the heat flux, and thereby guide part design and selection of process parameters instead of expensive empirical testing. Compared to finite element analysis techniques, the proposed mesh-free graph theory-based approach facilitates layer-by-layer simulation of the heat flux within a few minutes on a desktop computer. To explore these assertions we conducted the following two studies: (1) comparing the heat diffusion trends predicted using the graph theory approach, with finite element analysis and analytical heat transfer calculations based on Green’s functions for an elementary cuboid geometry which is subjected to an impulse heat input in a certain part of its volume, and (2) simulating the layer-by-layer deposition of three part geometries in a laser powder bed fusion metal AM process with: (a) Goldak’s moving heat source finite element method, (b) the proposed graph theory approach, and (c) further comparing the heat flux predictions from the last two approaches with a commercial solution. From the first study we report that the heat flux trend approximated by the graph theory approach is found to be accurate within 5% of the Green’s functions-based analytical solution (in terms of the symmetric mean absolute percentage error). Results from the second study show that the heat flux trends predicted for the AM parts using graph theory approach agrees with finite element analysis with error less than 15%. More pertinently, the computational time for predicting the heat flux was significantly reduced with graph theory, for instance, in one of the AM case studies the time taken to predict the heat flux in a part was less than 3 minutes using the graph theory approach compared to over 3 hours with finite element analysis. While this paper is restricted to theoretical development and verification of the graph theory approach for heat flux prediction, our forthcoming research will focus on experimental validation through in-process sensor-based heat flux measurements.more » « less
-
Part design and process parameters directly influence the spatiotemporal distribution of temperature and associated heat transfer in parts made using additive manufacturing (AM) processes. The temporal evolution of temperature in AM parts is termed herein as thermal profile or thermal history. The thermal profile of the part, in turn, governs the formation of defects, such as porosity and shape distortion. Accordingly, the goal of this work is to understand the effect of the process parameters and the geometry on the thermal profile in AM parts. As a step towards this goal, the objectives of this work are two-fold: (1) to develop and apply a finite element-based framework that captures the transient thermal phenomena in the fused filament fabrication (FFF) additive manufacturing of acrylonitrile butadiene styrene (ABS) parts, and (2) validate the model-derived thermal profiles with experimental in-process measurements of the temperature trends obtained under different feed rate settings (viz., the translation velocity, also called scan speed or deposition speed, of the extruder on the FFF machine). In the specific context of FFF, this foray is the critical first-step towards understanding how and why the thermal profile directly affects the degree of bonding between adjacent roads (linear track of deposited material), which in turn determines the strength of the part, as well as, propensity to form defects, such as delamination. From the experimental validation perspective, we instrumented a Hyrel Hydra FFF machine with three non-contact infrared temperature sensors (thermocouples) located near the nozzle (extruder) of the machine. These sensors measure the surface temperature of a road as it is deposited. Test parts are printed under three different settings of feed rate, and subsequently, the temperature profiles acquired from the infrared thermocouples are juxtaposed against the model-derived temperature profiles. Comparison of the experimental and model-derived thermal profiles confirms a high-degree of correlation therein, with maximum absolute error less than 10%. This work thus presents one of the first efforts in validation of thermal profiles in FFF via in-process sensing. In our future work, we will focus on predicting defects, such as delamination and inter-road porosity based on the thermal profile.more » « less
-
Design Rules and In-Situ Quality Monitoring of Thin-Wall Features Made Using Laser Powder Bed FusionThe goal of this work is to quantify the link between the design features (geometry), in-situ process sensor signatures, and build quality of parts made using laser powder bed fusion (LPBF) additive manufacturing (AM) process. This knowledge is critical for establishing design rules for AM parts, and to detecting impending build failures using in-process sensor data. As a step towards this goal, the objectives of this work are two-fold: Quantify the effect of the geometry and orientation on the build quality of thin-wall features. To explain further, the geometry-related factor is the ratio of the length of a thin-wall (l) to its thickness (t) defined as the aspect ratio (length-to-thickness ratio, l/t), and the angular orientation (θ) of the part, which is defined as the angle of the part in the X-Y plane relative to the re-coater blade of the LPBF machine. Assess the thin-wall build quality by analyzing images of the part obtained at each layer from an in-situ optical camera using a convolutional neural network. To realize these objectives, we designed a test part with a set of thin-wall features (fins) with varying aspect ratio from Titanium alloy (Ti-6Al-4V) material — the aspect ratio l/t of the thin-walls ranges from 36 to 183 (11 mm long (constant), and 0.06 mm to 0.3 mm in thickness). These thin-wall test parts were built under three angular orientations of 0°, 60°, and 90°. Further, the parts were examined offline using X-ray computed tomography (XCT). Through the offline XCT data, the build quality of the thin-wall features in terms of their geometric integrity is quantified as a function of the aspect ratio and orientation angle, which suggests a set of design guidelines for building thin-wall structures with LPBF. To monitor the quality of the thin-wall, in-process images of the top surface of the powder bed were acquired at each layer during the build process. The optical images are correlated with the post build quantitative measurements of the thin-wall through a deep learning convolutional neural network (CNN). The statistical correlation (Pearson coefficient, ρ) between the offline XCT measured thin-wall quality, and CNN predicted measurement ranges from 80% to 98%. Consequently, the impending poor quality of a thin-wall is captured from in-situ process data.more » « less
-
The objective of this paper is to experimentally validate the graph-based approach that was advanced in our previous work for predicting the heat flux in metal additive manufactured parts. We realize this objective in the specific context of the directed energy deposition (DED) additive manufacturing process. Accordingly, titanium alloy (Ti6Al4V) test parts (cubes) measuring 12.7 mm × 12.7 mm × 12.7 mm were deposited using an Optomec hybrid DED system at the University of Nebraska-Lincoln (UNL). A total of six test parts were manufactured under varying process settings of laser power, material flow rate, layer thickness, scan velocity, and dwell time between layers. During the build, the temperature profiles for these test parts were acquired using a single thermocouple affixed to the substrate (also Ti6Al4V). The graph-based approach was tailored to mimic the experimental DED process conditions. The results indicate that the temperature trends predicted from the graph theoretic approach closely match the experimental data; the mean absolute percentage error between the experimental and predicted temperature trends were in the range of 6% ∼ 15%. This work thus lays the foundation for predicting distortion and the microstructure evolved in metal additive manufactured parts as a function of the heat flux. In our forthcoming research we will focus on validating the model in the context of the laser powder bed fusion process.more » « less
An official website of the United States government
